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Disclaimer: By no means do I claim my analysis below to be complete.

1 Introduction

During Dr. Hosoi’s follow-up with the students after her publication of the “Mea Culpa,” I
presented a sketch of a mathematical critique. Dr. Hosoi suggested that I submit it to the
faculty, so I have developed it a bit further below.

For the analysis below, let x ∈ X , y ∈ Y be random variables representing the true
number of voters and the attendance population, respectively. Here X and Y are the sample
spaces, in this case the positive integers at least equal to 30 (which I believe to be the quorum
for the meeting). Then let pX |Y (x|y) be the posterior distribution of attendance vs. voters, and
let pX(x) be the prior distribution of voters in each meeting. We are trying to extract a good
guess for x based on partial data we have about y, both at the February meeting and at prior
meetings.

Recall that the analysis hinges on the use of the “mean” average of the last 10 voting
participation records as a reasonable estimate for the expected number of voters in this
faculty meeting. From this is subtracted the actual number of “yes” votes to find that the
number of “no” votes would have been insufficient to overturn the outcome. I claim that this
analysis is faulty on three different levels.

2 Estimators

First, let us question the use of the mean as an estimator. In general, the mean is known
to be an unbiased estimator - i.e., the following relation holds: EPY [x̂(y)− x] = 0 where the
estimator x̂(y) is the mean. However, it is not the case that any unbiased estimator is always
an efficient estimator - in fact, the only estimator which is guaranteed to be efficient, if an
efficient estimator exists, is the maximum likelihood estimator (MLE) given by:

x̂ML(y) = argmax
x∈X

pY (y;x)

We write it in this parametrized way, rather than pX |Y (x|y), because we may not be in a
situation which has a prior distribution over X . The MLE estimator is in general efficient
when an efficient estimator exists, but the mean is not. As a trivial example, let us consider
the case where you ask a small child to pick a number from 0 through 9. Suppose the child
wants to play a little game, and each time you ask, they alternate between picking either 1
or 3. In the limit, the mean of this distribution over the integers between 0 and 9 is indeed
2. However, depending on your cost function, that may not be an appropriate estimate for
the next value, given that we know this distribution has a particular shape. For example, in
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the binary setting where guesses are either “right” or “wrong”, the best guess is either 1 or
3. The choice of the mean as an appropriate estimator for this problem makes a particular
assumption about the underlying distribution. This brings me to my next point.

3 Gaussians

Second, let us note the abuse of the Gaussian. Accompanying the analysis is a neat image
of a Gaussian distribution, shading in the probability of overturning the outcome, to lend
credibility. It is true that, in the case of an underlying Gaussian distribution, the mean and
MLE converge. This is also true as we expand the distribution ad infinitum and take means
of various samples (via the central limit theorem). But the graph provides a candidate for
the raw number of votes, and suggests that this distribution is itself Gaussian. This is used
to justify conducting a power-test of the hypotheses to show that the vote would have been
unlikely to have been overturned. I claim this is an abuse of the Gaussian.

First, note that the actual distribution of the data provided is shown below. The graph is
not obviously Gaussian, and instead looks vaguely bimodal. I will explain why I think this is
a reasonable model for this data.

When the faculty vote on matters that concern them very little, I would suspect there
to be low voter participation. Similarly, I would expect high voter participation on matters
that concern them very greatly. Even this naive first-pass attempt at contextualizing the data
would yield a bimodal distribution for voter participation - one peak for the “less interesting”
votes, and one for the “more interesting” ones. As evidenced by my toy example in the
previous section, using the mean as an efficient estimator for such a bimodal distribution
would be erroneous.
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So why do statisticians use the Gaussian so frequently? Well, they do use the Gaussian,
but they use it to model statistics about the data, not the underlying distribution for the data
itself. The point of the central limit theorem is to show that, if we take decently large samples
from any (reasonable) distribution and compute, for each sample, some unbiased statistic
(e.g., the mean), then the distribution of those statistics will converge to a Gaussian in the limit.
This requires a bunch of data, and definitely does not mean that the underlying distribution
of voters is Gaussian. Thus, this abuse of the Gaussian betrays, at best, a misunderstanding
of the role of Gaussian distributions in statistics and, at worst, a deliberate manipulation of
the reader (since the actual data, as plotted, is nowhere near Gaussian, and contains way too
few points to be able to reliably conclude anything). I suspect that the idea was to take the
mean of the data as the estimator (an erroneous step, as outlined in the previous section),
and therefore the analysis invokes the the Gaussian prior pX(x). Regardless, this is a wholly
unjustified assumption without fidelity to the data. But what exactly is the data representing?

4 Data

Third, let us question the data that was used. The data itself is not conducive to a rigorous
analysis. If we wanted to get a distribution of voter participation, we ought to have used
the percentage of voters, normalized to the attendance at each meeting at the time of the
vote. The analysis rightly points out the difficulties in estimating the number of participants
present at the time of the vote. But even if we assume, as written, that 95-105 people are
present usually, using the raw number of voters rather than the percentage invalidates any real
statistical analysis we can perform. After all, we are not drawing from a stable population!
Recall that we are interested in the posterior distribution pX |Y (x|y) such that we can extract
a guess for the number of voters given the total attendance. We cannot produce this guess
without properly taking into account the attendance at each session, yet that data is nowhere
to be found. To illustrate the issue, note that the two peaks in the empirical distribution occur
at 64 and 83 - but 64

105 and 83
95 is a very different story from 64

95 and 83
105 . So it would appear

that, even if we were to accept these methodologies, deconstructed and criticized above, this
analysis cannot extend to the data as provided.
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